Characterization of the Atomic Space H1 for Non Doubling Measures in Terms of a Grand Maximal Operator

نویسنده

  • XAVIER TOLSA
چکیده

Let μ be a Radon measure on R, which may be non doubling. The only condition that μ must satisfy is the size condition μ(B(x, r)) ≤ C r, for some fixed 0 < n ≤ d. Recently, the author introduced spaces of type BMO(μ) and H(μ) with properties similar to ones of the classical spaces BMO and H defined for doubling measures. These new spaces proved to be useful to study the L(μ) boundedness of Calderón-Zygmund operators without assuming doubling conditions. In this paper a characterization of this new atomic Hardy space H(μ) in terms of a maximal operator MΦ is given. It is shown that f belongs to H(μ) if and only if f ∈ L(μ), ∫ f dμ = 0 and MΦf ∈ L (μ), as in the usual doubling situation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Localized Hardy Spaces H Related to Admissible Functions on RD-Spaces and Applications to Schrödinger Operators

Let X be an RD-space, which means that X is a space of homogenous type in the sense of Coifman and Weiss with the additional property that a reverse doubling property holds in X . In this paper, the authors first introduce the notion of admissible functions ρ and then develop a theory of localized Hardy spaces H ρ (X ) associated with ρ, which includes several maximal function characterizations...

متن کامل

Dilations‎, ‎models‎, ‎scattering and spectral problems of 1D discrete Hamiltonian systems

In this paper, the maximal dissipative extensions of a symmetric singular 1D discrete Hamiltonian operator with maximal deficiency indices (2,2) (in limit-circle cases at ±∞) and acting in the Hilbert space ℓ_{Ω}²(Z;C²) (Z:={0,±1,±2,...}) are considered. We consider two classes dissipative operators with separated boundary conditions both at -∞ and ∞. For each of these cases we establish a self...

متن کامل

A Hybrid Proximal Point Algorithm for Resolvent operator in Banach Spaces

Equilibrium problems have many uses in optimization theory and convex analysis and which is why different methods are presented for solving equilibrium problems in different spaces, such as Hilbert spaces and Banach spaces. The purpose of this paper is to provide a method for obtaining a solution to the equilibrium problem in Banach spaces. In fact, we consider a hybrid proximal point algorithm...

متن کامل

On the k-nullity foliations in Finsler geometry

Here, a Finsler manifold $(M,F)$ is considered with corresponding curvature tensor, regarded as $2$-forms on the bundle of non-zero tangent vectors. Certain subspaces of the tangent spaces of $M$ determined by the curvature are introduced and called $k$-nullity foliations of the curvature operator. It is shown that if the dimension of foliation is constant, then the distribution is involutive...

متن کامل

Fe b 20 00 BMO , H 1 , AND CALDERÓN - ZYGMUND OPERATORS FOR NON DOUBLING MEASURES

Given a Radon measure μ on R, which may be non doubling, we introduce a space of type BMO with respect to this measure. It is shown that many properties which hold for the classical space BMO(μ) when μ is a doubling measure remain valid for the space of type BMO introduced in this paper, without assuming μ doubling. For instance, Calderón-Zygmund operators which are bounded on L(μ) are also bou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000